If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8p^2+16p-54=0
a = 8; b = 16; c = -54;
Δ = b2-4ac
Δ = 162-4·8·(-54)
Δ = 1984
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1984}=\sqrt{64*31}=\sqrt{64}*\sqrt{31}=8\sqrt{31}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-8\sqrt{31}}{2*8}=\frac{-16-8\sqrt{31}}{16} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+8\sqrt{31}}{2*8}=\frac{-16+8\sqrt{31}}{16} $
| 27=12+3d | | -11(7x+5)=-440 | | 4/5x-11=65 | | r=2+3/4 | | 1=r-7/4 | | 12+6x-14-x=1 | | 14d+11d+19d=0 | | 3/2*x^2+8=2 | | -40=14+9w | | -40=14+9ww=-6w=5 | | -31/2=1/2y+1/2y+y | | 9y-2y=-70 | | u/3+19=23 | | x+.07x=54.74 | | u3+19=23 | | 4x^2+18=3 | | 2x-1+5=6x-1 | | 59=7b-4 | | 59=7b–4 | | 9+8a=-31 | | 8.5/1/3=x | | 420=2(r=10) | | 56=-10r-14 | | 56=-10r–14 | | 216/8=x | | 8/216=x | | 16=-6b-6-2 | | -8(3b+3)+(25b-3)=0 | | 2x-4=8-5x | | -7=-3a-4a | | -3/5x=3/2 | | |4p+10|=20 |